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Background: Cognitive impairment is a health problem that concerns almost every second 

elderly person. Physical and cognitive training have differential positive effects on cognition, 

but have been rarely applied in combination. This study evaluates synergistic effects of mul-

ticomponent physical exercise complemented with novel simultaneous cognitive training on 

cognition in older adults. We hypothesized that simultaneous cognitive–physical components 

would add training specific cognitive benefits compared to exclusively physical training.

Methods: Seniors, older than 70 years, without cognitive impairment, were randomly assigned 

to either: 1) virtual reality video game dancing (DANCE), 2) treadmill walking with simultane-

ous verbal memory training (MEMORY), or 3) treadmill walking (PHYS). Each program was 

complemented with strength and balance exercises. Two 1-hour training sessions per week over 

6 months were applied. Cognitive performance was assessed at baseline, after 3 and 6 months, and 

at 1-year follow-up. Multiple regression analyses with planned comparisons were calculated.

Results: Eighty-nine participants were randomized to the three groups initially, 71 completed 

the training, while 47 were available at 1-year follow-up. Advantages of the simultaneous 

cognitive–physical programs were found in two dimensions of executive function. “Shifting 

attention” showed a time×intervention interaction in favor of DANCE/MEMORY versus PHYS 

(F[2, 68] =1.95, trend P=0.075, r=0.17); and “working memory” showed a time×intervention 

interaction in favor of DANCE versus MEMORY (F[1, 136] =2.71, trend P=0.051, R2=0.006). 

Performance improvements in executive functions, long-term visual memory (episodic memory), 

and processing speed were maintained at follow-up in all groups.

Conclusion: Particular executive functions benefit from simultaneous cognitive–physical 

training compared to exclusively physical multicomponent training. Cognitive–physical training 

programs may counteract widespread cognitive impairments in the elderly.
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Introduction
A decrease in cognitive performance in old age is predominant in most individuals. 

This was confirmed by a large Italian epidemiological study demonstrating that aging-

associated cognitive decline has a prevalence rate of 28% for people from 65 years 

to 84 years.1 Additionally, another 17% of this Italian population (n=4,785) showed 

objective evidence of cognitive decline without cognitive complaints, which add 

up to a total of 45% of people showing some kind of cognitive impairment without 

dementia. Since cognitive decline potentially threatens independence and quality of 

life for older adults, prevention and treatment of cognitive impairment in the elderly 

Correspondence: Patrick eggenberger
Institute of human Movement sciences 
and sport, eTh Zurich, Wolfgang-
Paulistrasse 27, hIT J 32, Ch-8093 
Zurich, switzerland
Tel +41 44 632 40 18
Fax +41 44 632 11 42
email patrick.eggenberger@hest.ethz.ch 

Journal name: Clinical Interventions in Aging
Article Designation: Original Research
Year: 2015
Volume: 10
Running head verso: Eggenberger et al
Running head recto: Simultaneous cognitive–physical training to improve cognition in older adults
DOI: http://dx.doi.org/10.2147/CIA.S87732

http://www.dovepress.com/permissions.php
http://creativecommons.org/licenses/by-nc/3.0/
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/CIA.S87732
mailto:patrick.eggenberger@hest.ethz.ch


Clinical Interventions in Aging 2015:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1336

eggenberger et al

has assumed increasing importance.2 Two factors that may 

positively affect cognition in the elderly are physical activity 

and cognitive training.

Research has pointed out recently that physical activity 

may be relevant for healthy brain aging and may protect from 

cognitive decline and dementia.3–7 Most physical intervention 

studies that focused on adaptations in cognitive performance, 

brain function, or brain structure, applied aerobic type exer-

cise. Two meta-analytic studies reported that aerobic exercise 

is effective in increasing cognitive performance, in general, 

and executive function in particular.8,9 More recent studies 

also found that strength and coordination training may posi-

tively affect cognitive abilities.10,11 Voelcker-Rehage et al11  

demonstrated training specific functional plasticity in the 

brain based on functional magnetic resonance imaging data. 

Thereby, aerobic training increased activation in the senso-

rimotor network and coordination training led to a higher 

activation of the visuospatial network,11 whereas strength 

training changed the hemodynamic activity of brain regions 

associated with response inhibition processes.12

Cognitive training studies have often shown highly task 

specific effects.13–17 More widespread transfer effects were 

found when different cognitive abilities were combined in 

complex interventions or lifestyle changes.18 Nevertheless, 

effects were often small, while aerobic training elicited both 

broad transfer and relatively large effects.18 These findings 

led to the assumption that not only the combination of dif-

ferent cognitive abilities but also the combination of cogni-

tive and physical training improves cognitive performance 

in old age to a greater extent than the training of an isolated 

ability.5,7,18–22 Therefore, more and more studies pursue 

exactly this goal by administering a combined cognitive–

physical training approach.

Some studies applied the physical and cognitive training 

sessions in a sequential manner,23–26 whereas others performed 

the physical and cognitive training units simultaneously.27–30 

An advantage of simultaneous training designs might be that 

they include dual tasking and switching attention between 

the cognitive and physical activity. For instance, Theill et al27 

investigated the effects of simultaneous memory training and 

treadmill walking and revealed benefits in cognitive–motor 

dual-task walking compared to a single cognitive training and 

a passive control group. Virtual reality video game dancing 

represents a novel mode of simultaneous cognitive–physical 

training and has been applied by Pichierri et al.28,29 Interven-

tion groups demonstrated increased cognitive–motor dual-

task performance in a stepping accuracy task28 or during fast 

walking,29 respectively. Nonetheless, interpretation of the 

existing studies on combined cognitive–physical training is 

often limited due to small sample sizes,24,26,28,29 inconsistent 

training exposures between intervention groups,23–25,28,29 or 

the lack of reference groups with only physical training.27,28 

Moreover, transfer to different cognitive domains was not 

assessed in some studies28–30 and most interventions lasted 

for 4 months at most.23,24,26–30 This duration might be too short 

since physical training interventions of 6 months or longer 

have shown most consistent effects on cognition.3,8 Therefore, 

we suggest that the promising findings in previous research 

are worth further investigation.

This study aims to compare two variations of simultane-

ous cognitive–physical training with an exclusively physi-

cal multicomponent program and to evaluate the effects of 

these programs on cognition in healthy elderly people. We 

hypothesize, first, that simultaneous cognitive–physical 

training may create additional beneficial effects on cognition, 

and second, that the two cognitive–physical training varia-

tions may lead to differential cognitive adaptations. Based 

on previous findings, reported earlier, we expect cognition 

to improve in all three programs. Furthermore, we aim to 

investigate the performance maintenance 1 year after the 

training interventions.

Materials and methods
study design and participants
This study was a randomized, controlled trial (RCT), includ-

ing a three groups parallel 6-months training intervention and 

a 1-year nonintervention follow-up. Assessments of cognitive 

performance were performed four times: pretraining, after 

3 months, 6 months (posttraining), and at 1-year follow-up. 

Data collection and training were performed at Geriatrische 

Klinik St Gallen, Switzerland. The study protocol was 

approved through the local ethics committee of the canton 

St Gallen, Switzerland (study number: EKSG 12/092) and 

registered at Current Controlled Trials ISRCTN70130279. 

No changes were made to the planned methods after trial 

commencement. Our reporting in the manuscript adheres to 

the CONSORT 2010 guidelines.31

Participants were recruited through a newspaper article, 

a local seniors organization,32 senior residence facilities, 

primary-care physicians, and via the websites of the city’s 

geriatric hospital33 and the department of sports of the canton 

St Gallen.34 Interested persons were invited to an information 

event. We included male and female participants because 

both sexes are similarly affected by age-related cognitive 

decline.1 For eligibility, participants had to be older than 

70 years, live independently, or at senior residence facilities, 
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and had to sign the informed consent. Residents of retirement 

homes classified as 0, 1, or 2 within the Swiss classification 

system for health care requirements (BESA-levels, German 

abbreviation for Bewohner-Einstufungs- und Abrechnungs-

System) could enroll in the study. Level 0 means the person 

does not need care or treatment; levels 1–2 means, the person 

only needs little care or treatment. Seniors with diagnosed 

Alzheimer’s disease, dementia, recent head injury, or a 

score ,22 points35 on the Mini Mental Status Examination 

(MMSE),36 which indicates cognitive impairment were 

excluded. Judgment by their primary care physician was 

required in the case of acute or instable chronic diseases (eg, 

stroke, diabetes), rapidly progressing or terminal illnesses 

before accepting a person for participation.

A priori power analysis (G*Power 3.1.3 Software37) 

revealed a sample size of 75 participants in order to achieve 

80% power for a three group pretest, 3- and 6-months test 

design (25 participants per group). The α-level was set at 0.05 

and the effect size f at 0.3. The randomization scheme was gen-

erated with the website Randomization.com,38 applying block 

randomization to achieve three groups with a ratio of 1:1:1. 

Participants were blinded to the expected study outcome, 

while blinding of the investigators was not possible since they 

supervised and conducted training and testing sessions.

Training programs
Two 1-hour training sessions per week were performed in 

groups of five to six participants, under the instruction of two 

trained postgraduate students. At least 1 day was included 

between sessions for recovery. Training programs were 

based on current recommendations for physical fitness and 

fall prevention for the elderly.39–41 The three multicomponent 

programs consisted of 20 minutes aerobic endurance 

training (either video game dancing, treadmill memory 

training, or treadmill walking) and complementary strength 

and balance exercises (20 minutes each). The exercise 

training principles of progression and overload were applied 

for every training component,42 and they were adapted to 

each participant’s abilities such that a moderate to vigorous 

intensity was achieved.39 In total, 52 sessions were per-

formed within 6 months (26 weeks), with some participants 

missing certain sessions due to personal reasons. Sessions 

25–32 (4 weeks) were performed individually according to a 

home exercise plan, due to Christmas holiday and 3-months 

test sessions. The home exercise plan comprised the same 

strength and balance exercises as instructed during normal 

training sessions, but no video game dancing and treadmill 

memory training. Compliance to the home exercise plan was 

assessed with a training diary.

Video game dancing (DAnCe)
Program DANCE included virtual reality video game dancing 

as a simultaneous cognitive–physical training (Figure 1A). 

This training component combines an attention demanding 

cognitive task with a simultaneous motor coordination aspect. 

We used two Impact Dance Platforms (Positive Gaming 

BV, Haarlem, the Netherlands) and created various levels of 

difficulty in step patterns and frequency with the StepMania 

Software.43 Several styles of music were selected to add vari-

ety and meet preferences of participants. Participants stood 

on the one-by-one meter platform, which contained four 

pressure sensitive areas to detect steps forward, backward, 

to the left, and to the right, respectively. Stepping sequences 

were cued with arrows appearing on a large screen and had 

Figure 1 simultaneous cognitive–physical training components: video game dancing (A) and treadmill memory training (B). In (A) two participants perform steps on 
a pressure sensitive platform to the rhythm of the music. step timing and direction is cued with arrows on a screen. In (B) a participant is walking on a treadmill while 
performing verbal memory exercises presented on a computer screen.
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to be performed exactly when an arrow reached a highlighted 

area on the screen in order to achieve best scores in the game. 

Participants were holding on to ropes for security reasons. 

Training difficulty was adapted to each individual’s coordi-

nation ability and was increased progressively.

Treadmill memory training (MeMOrY)
Program MEMORY comprised treadmill walking with ver-

bal memory exercise as a simultaneous cognitive–physical 

training (Figure 1B). Verbal memory training consisted of a 

computer-based serial position training that was presented on 

a computer screen in front of the treadmill, with a standard 

computer mouse as an input device. E-Prime 2.0 Professional 

software (Psychology Software Tools, Pittsburgh, PA, USA) 

was used to program the training. Participants were asked 

to memorize the correct sequence of 3–20 words lighting 

up one after the other for 3 seconds on the computer screen. 

Thereafter, a distraction task was followed where participants 

had to define if three presented words had a meaning or not. 

Then, the initially memorized words were presented again, 

either in the same or another sequence, and participants had to 

decide if the sequence remained the same or not, by pressing 

the mouse button. The initial level for this training was set 

at a sequence of three words and was extended by one word 

as soon as the participants reached 80% of correct answers 

within the level. Treadmill speed and inclination were set 

individually for each participant, such that a subjective rate 

of perceived exertion of five to seven points on the ten-point 

Borg scale was reached as recommended by the American 

College of Sports Medicine (ACSM) position stand on exer-

cise with older adults.39

Treadmill walking (PhYs)
Program PHYS included aerobic treadmill walking without 

an additional cognitive task and acted as a reference group 

with exclusively physical training components. Participants 

were walking or running at a constant pace. Treadmill speed 

and inclination were set individually for each participant, 

such that a subjective rate of perceived exertion of five to 

seven points on the ten-point Borg scale was reached.39

Complementary strength and balance exercises
In addition to one of the three different aerobic training 

components described earlier, muscular strength and balance 

exercises complemented each program (Figure 2). Four to 

five strength exercises for lower and upper extremities and 

trunk stabilization were performed using own body weight, 

resistive rubber bands, and weight vests of maximally 10 kg 

(1–3 sets, with 8–12 repetitions, at slow to fast movement 

speed). Number of sets and repetitions were adapted individu-

ally for each participant, such that a subjective rate of per-

ceived exertion of five to seven points on the ten-point Borg 

scale was reached.39 Balance training consisted of different 

exercises including two- and single-leg stance variations, 

either on the floor or on various types of instable surfaces 

(eg, foam and air pads, ropes, etc).44 Exercise level, volume, 

and intensity were chosen according to the participants’ 

individual abilities and increased progressively.

Measurements
Cognitive tasks (primary outcome)
Cognitive performance was measured by applying a test 

battery including nine “paper-and-pencil” tasks to assess 

transfer to different cognitive domains. Four of these tests 

were repeated at 1-year follow-up, while the other tests were 

excluded to reduce test time for participants. Executive function 

was measured with the Trail Making Test Part B (TMT-B),45 

working memory was assessed with the Executive Control 

Task,46 and long-term visual memory was tested with three 

different parallel versions of the Paired-Associates Learning 

task;46 furthermore, long-term verbal memory was assessed 

with the German version47 of the Logical Memory subtest 

(Story Recall) from the Wechsler Memory Scale-Revised 

(WMS-R),48 whereby only one of two different stories from 

the original test was presented (story A) and no delayed recall 

after 30 minutes was performed; moreover, short-term verbal 

memory was measured with the Digit Forward and Backward 

Figure 2 examples of complementary balance (A) and strength (B) exercises.
Notes: The participant in (A) tries to maintain balance while stepping from one 
object to the next (objects are soft rubber “stones” and a skipping rope) and  
(B) shows a participant performing split leg squats wearing a weight vest.
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Tasks from WMS-R,48 attention was tested with three different 

parallel versions of the Age Concentration Tests A and B49 

(as an adaptation to the original test, we calculated “number 

of correct figures” divided by “time” as the test result); and 

finally, information processing speed was assessed with the 

Trail Making Test Part A (TMT-A)45 and the Digit Symbol 

Substitution Task (DSST) from Wechsler Adult Intelligence 

Scale-Revised (WAIS-R).50

Training enjoyment (secondary outcome)
Overall training enjoyment was assessed at 6-months test 

using the German eight-item version of the Physical Activity  

Enjoyment Scale (PACES).51,52 The average score of the 

eight items was used for statistical analysis. Additionally, 

we asked participants specifically about their enjoyment of 

the balance and the strength training, as well as the video 

game dancing, the treadmill memory training, or the tread-

mill walking. Thereby, we used the same scoring system 

from one to seven points (least to most enjoyment) as in the 

PACES. We assumed that training with cognitive elements 

would be enjoyed more than treadmill walking and that 

video game dancing would be enjoyed more than treadmill 

memory training.53

statistical analyses
Group differences in the baseline demographic and perfor-

mance data were compared with one-way analysis of vari-

ance (ANOVA). Multiple regression analysis with planned 

comparisons, including orthogonal contrast and polynomial 

trend coding, were applied to investigate training effects on 

the cognitive test battery for the 6-months training period. 

We produced contrast coding variables based on the hypoth-

eses. The first contrast was set to compare the two combined 

cognitive–physical training groups with PHYS. The second 

contrast compared the two cognitive–physical training groups 

(DANCE versus MEMORY). According to the study design, 

comprising three time points of measurement, we created 

polynomial trend coding variables to assess the linear and 

quadratic trend. Effect code variables were produced for each 

group’s individuals to account for subject effects. Repeated 

measures ANOVA with Bonferroni correction was applied 

for post hoc comparisons from pretest to 3-months test and 

from 3- to 6-months tests (P=0.025 for two comparisons). 

Repeated measures of ANOVA were also used to assess 

differences between 6-months test and 1-year follow-up. 

Missing values from participants who completed the full 

6-months trial but missed single test items due to health 

constraints or social obligations were replaced by the group 

mean value at the respective time point of measurement. 

One-way ANOVA with planned contrasts was performed 

to compare group differences in the training enjoyment 

questionnaire. Statistical calculations were performed with 

IBM SPSS Statistics software for Macintosh, version 22.0 

(IBM Corp., Armonk, NY, USA) with a significance level 

of α=0.05. Effect sizes, represented as R2-change in the 

multiple regression analysis, were considered as small for 

R2-change =0.01, medium for R2-change =0.06 and large 

for R2-change =0.14 and above; effect size r from one-way 

ANOVA, was defined as small at r=0.10, medium at r=0.30, 

and large at r=0.50 and above.54

Results
Out of 89 participants initially enrolled, 71 participants com-

pleted the 6-months training intervention (20.2% attrition) 

and were included in the analysis of the outcomes derived at 

pretest, 3- and 6-months tests. Time points and reasons for 

dropouts are presented in Figure 3. Dropouts were equally 

distributed between groups, and therefore, the final analy-

ses were performed only in individuals who completed the 

6-months intervention. Forty-seven participants were avail-

able for the 1-year follow-up test session and were included 

in the analysis of these outcomes. The following missing 

values from persons who completed the 6-months training 

were replaced by the group mean value: at pretest, three 

persons from DANCE and two persons from MEMORY 

missed TMT A and B, one person from DANCE missed 

four other items, and one person from PHYS missed seven 

test items; at 3-months test, one person from MEMORY 

missed all nine tests (this person did not miss any pretests). 

No missing values were evident at 6 months and follow-up 

tests. One cognitive task, the Digit Backward Task, was 

not analyzed because some participants applied a strategy 

that defeated the idea of the test. Participants’ recruitment 

lasted from August 2012 until the end of September 2012, 

when pretests were performed. The training intervention 

lasted from October 2012 until the end of March 2013, 

with 3-months test at the beginning of January 2013 and 

6-months test at the beginning of April 2013. One year 

later, in April 2014, follow-up test was performed. Table 

1 shows baseline demographic characteristics and training 

compliance of the three intervention groups. Baseline cogni-

tive performance data did not show significant differences 

between intervention groups for any of the nine cognitive 

transfer tests (TMT-A P=0.351; TMT-B P=0.334; Executive 

Control P=0.652; Paired Associates P=0.156; Story Recall 

P=0.655; Digit Forward P=0.458; Age Concentration A 
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Table 1 Baseline demographic characteristics and training compliance

Variable DANCE MEMORY PHYS P-value, two tailed

n 24 22 25
sex, female 14, 58.3% 16, 72.7% 16, 64.0% 0.602
Age, years 77.3 (6.3) 78.5 (5.1) 80.8 (4.7) 0.079t

MMse, score 28.4 (1.4) 28.3 (1.2) 28.0 (1.7) 0.533
education, years 13.7 (1.5) 13.9 (2.1) 12.0 (2.1) 0.002**
Total training compliance (52 sessions) 84.3% (12.7%) 86.1% (9.1%) 87.1% (7.9%) 0.633
home-training compliance (eight sessions) 79.9% (23.0%) 90.0% (14.8%) 83.5% (18.4%) 0.201

Notes: Data are means (standard deviation in brackets) or numbers. Bold values indicate significance or trend, **P,0.01, tP,0.10 trend.
Abbreviations: MMse, Mini Mental state examination; DAnCe, virtual reality video game dancing; MeMOrY, treadmill walking with simultane ous verbal memory training; 
PhYs, treadmill walking.

Figure 3 Trial design and participants’ flow.
Notes: Participants were randomly assigned to one of two simultaneous cognitive–physical training groups (DAnCe and MeMOrY) or an exclusively physical multicomponent 
training group (PhYs) and were trained over 6 months twice weekly for 1 hour. nine cognitive tests were assessed at pretest, 3-months test, and 6-months test. Four tests 
were repeated at 1-year follow-up.
Abbreviations: DAnCe, virtual reality video game dancing; MeMOrY, treadmill walking with simultane ous verbal memory training; PhYs, treadmill walking.

P=0.390; Age Concentration B P=0.346; DSST P=0.548; 

all P-values two-tailed).

Cognitive tasks
Figures 4 and 5 depict performance development for the nine 

cognitive tasks. Statistical details of the multiple regression 

analysis over the first three time points of measurement, 

including two planned comparisons or contrasts, are provided 

in Table 2. In eight of nine cognitive tasks, except Digit 

Forward Task, linear global time effect showed significant 

performance improvement from pretest to 6-months test 

in each of the three intervention groups. The analysis of 
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Figure 4 Cognitive performance developments in the four tests that included a 1-year follow-up measurement.
Notes: Significant overall improvements were shown in all tests over the 6-months training period (graphs A–D all P,0.05, one tailed). In Trail Making B (graph B), only the 
two groups with a cognitive training component (DAnCe and MeMOrY) improved from pretest to 3-months test (trend P=0.075, one tailed). In executive Control (graph 
C), different time courses of adaptation between DAnCe and MeMOrY were found (trend P=0.051, one tailed). From 6-months test to 1-year follow-up test Trail Making B 
improved significantly (graph B, P=0.015), while performance was maintained in the three other tests (graphs A, C, and D). error bars indicate ± standard error of the mean.
Abbreviations: DAnCe, virtual reality video game dancing; MeMOrY, treadmill walking with simultane ous verbal memory training; PhYs, treadmill walking.

performance maintenance from 6 months to follow-up test 

is shown in Table 3. Performance remained unchanged until 

1-year follow-up test in three cognitive tasks and increased 

significantly in TMT-B.

The first contrast in the multiple regression analysis tested 

if the two simultaneous cognitive–physical interventions 

performed better compared to PHYS. Thereby no significant 

time×intervention interaction was found. Additional post hoc 

comparison for performance development in the TMT-B 

from pretest to 3-months test showed a small to moderate 

effect with a trend to significance for the time×intervention 

interaction between DANCE/MEMORY versus PHYS: the 

two groups with a cognitive training component reduced 

their time to complete the task, while PHYS was perform-

ing slower (F[2, 68] =1.95, trend P=0.075 [one tailed for 

directional hypothesis], r=0.17). No other trend or signifi-

cant time×intervention interaction was found for post hoc 

comparisons of the two separate 3-months training periods 

(data are not presented).

The second contrast tested differences between the two 

cognitive–physical interventions. There was a trend to a 

significant linear time×intervention interaction between 

DANCE and MEMORY in the Executive Control Task 

from pretest to 6-months test, reflecting different time 

courses of adaptation: DANCE improved continuously, 

while MEMORY showed an improvement over the first 

3 months and a decrease of performance, back to baseline 

level, after the second 3 months of training (F[1, 136] =2.71, 

trend P=0.051 [one tailed for directional hypothesis], 

R2-change =0.006). Additional post hoc comparison of the 

development in the Executive Control Task from 3-months 

to 6-months tests revealed a significant time×intervention 

interaction with a small to moderate effect, also reflect-

ing the aforementioned improvement for DANCE and the 

decline in MEMORY (F[2, 68] =3.20, P=0.024 [one tailed 

for directional hypothesis], r =0.21).

Training enjoyment
Training enjoyment was measured at 6-months test in the 71 

participants who completed the 6-months training. Results 

are presented in Figure 6. One-way ANOVA and planned 

contrasts did not show significant group differences for overall 
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Figure 5 Cognitive performance developments in the five tests that did not include a 1-year follow-up measurement.
Notes: Significant overall improvements were shown in the tests in graphs (A, C, D, and E) (all P,0.05, one tailed) over the 6-months training period. no improvement 
was found in Digit Forward (graph B). error bars indicate ± standard error of the mean.
Abbreviations: DAnCe, virtual reality video game dancing; MeMOrY, treadmill walking with simultane ous verbal memory training; PhYs, treadmill walking.

training enjoyment (PACES, P=0.606), training enjoyment of 

balance (P=0.979), and strength training (P=0.972). A trend 

to a significant contrast was found between the enjoyment of 

the two cognitive–physical training components (video game 

dancing and treadmill memory training) and the treadmill 

walking (t[68] =1.503, trend P=0.069 [one tailed for directional 

hypothesis], r=0.18). Participants seemed to favor the two 

cognitive–physical components over the treadmill walking.

Discussion
This study aimed to compare two simultaneous cognitive–

physical training interventions with an exclusively physical 

multicomponent training program and to evaluate effects on 

cognition. The study comprised a 6-months training interven-

tion and a 1-year follow-up. The two main findings were first, 

that the cognitive–physical programs were partially advanta-

geous to boost performance in two measures of executive 

function (switching attention and working memory), thereby 

video game dancing resulted in transfer to an untrained cogni-

tive domain (working memory); and second, that cognitive 

performance, including executive functions, long-term visual 

memory (episodic memory), and processing speed, was main-

tained until 1-year follow-up. These findings are important 

since executive functions, episodic memory, and processing 

speed are particularly affected by aging-related decline.55 

Therefore, we suggest that simultaneous cognitive–physical 
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Table 2 Multiple regression for the linear global time effect (from pretest to 3- and 6-months tests, n=71) and the interaction between 
orthogonal contrasts and time effect for the cognitive test battery

Dependent variable
(cognitive domain)

Predictor b 95% CI SE b β P one tailed R2-change

Trail Making Part A
(information processing speed)

ABC -4.93 -6.81 -3.05 0.95 -0.22 ,0.001*** 0.049
AB×C 0.78 -0.53 2.09 0.66 0.05 0.120 0.003

A×B 0.06 -2.27 2.40 1.18 0.00 0.479 0.000
Trail Making Part B
(executive function, shifting)

ABC -5.57 -11.46 0.32 2.98 -0.08 0.032* 0.006
AB×C -0.93 -5.03 3.18 2.08 -0.02 0.328 0.000

A×B -1.76 -9.07 5.56 3.70 -0.02 0.318 0.000
executive Control
(executive function, working memory)

ABC 0.70 0.14 1.27 0.29 0.11 0.008** 0.013
AB×C -0.19 -0.58 0.20 0.20 -0.04 0.170 0.002

A×B 0.58 -0.12 1.28 0.35 0.08 0.051t 0.006
Paired-Associates learning
(long-term visual memory)

ABC 0.51 0.26 0.76 0.13 0.21 ,0.001*** 0.043
AB×C 0.05 -0.12 0.23 0.09 0.03 0.272 0.001

A×B -0.03 -0.34 0.28 0.16 -0.01 0.426 0.000
story recall
(long-term verbal memory)

ABC 0.55 0.19 0.92 0.18 0.13 0.002** 0.017
AB×C -0.04 -0.29 0.22 0.13 -0.01 0.389 0.000

A×B 0.11 -0.35 0.56 0.23 0.02 0.319 0.000
Digit Forward
(short-term verbal memory)

ABC 0.00 -0.23 0.23 0.12 0.00 0.493 0.000

AB×C 0.00 -0.16 0.16 0.08 0.00 0.487 0.000

A×B -0.11 -0.39 0.18 0.14 -0.04 0.225 0.002
Age Concentration Test A (concentration,  
attention)

ABC 0.03 0.02 0.05 0.01 0.20 ,0.001*** 0.040
AB×C 0.00 -0.01 0.01 0.01 -0.02 0.366 0.000

A×B 0.00 -0.02 0.02 0.01 -0.01 0.407 0.000
Age Concentration Test B (concentration, 
attention)

ABC 0.01 0.00 0.03 0.01 0.08 0.036* 0.007
AB×C 0.00 -0.01 0.01 0.01 -0.01 0.433 0.000

A×B 0.01 -0.01 0.03 0.01 0.05 0.140 0.002
Digit symbol substitution
(information processing speed)

ABC 2.20 1.62 2.77 0.29 0.18 ,0.001*** 0.033
AB×C 0.16 -0.24 0.56 0.20 0.02 0.216 0.000

A×B -0.44 -1.15 0.27 0.36 -0.03 0.113 -0.001

Notes: ABC, linear global time effect; AB×C, linear time×intervention interaction DAnCe/MeMOrY versus PhYs; A×B, linear time×intervention interaction DAnCe versus 
MEMORY. A, DANCE; B, MEMORY; C, PHYS. Bold values indicate significance or trend, *P,0.05, **P,0.01, ***P,0.001, tP,0.10 trend.
Abbreviations: DANCE, virtual reality video game dancing; MEMORY, treadmill walking with simultane ous verbal memory training; PHYS, treadmill walking; CI, confidence 
interval; se, standard error of the mean.

Table 3 repeated measures AnOVA from 6-months test to follow-up test, n=47

Dependent variable
(cognitive domain)

Effect F(2, 44) P two tailed r

Trail Making Part A
(information processing speed)

Time 0.104 0.748 0.05
Time×intervention 0.664 0.520 0.12

Trail Making Part B
(executive function, shifting)

Time 6.444 0.015* 0.36
Time×intervention 0.372 0.691 0.09

executive Control
(executive function, working memory)

Time 0.110 0.741 0.05
Time×intervention 1.086 0.346 0.16

Paired-Associates learning
(long-term visual memory)

Time 1.133 0.293 0.16
Time×intervention 0.216 0.807 0.07

Notes: *P,0.05. Bold values indicate significance or trend.
Abbreviation: AnOVA, analysis of variance.

training should be integrated in training programs aiming to 

improve cognition in the elderly.

Does simultaneous cognitive–physical 
training boost cognitive performance?
We found one indication in our results that supported 

the hypothesis that the simultaneous cognitive–physical 

programs (DANCE, MEMORY) had advantages over an 

exclusively physical intervention (PHYS) in terms of cog-

nitive adaptations. Both cognitive–physical interventions 

showed larger improvements in the TMT-B compared to 

PHYS within the initial 3-months training period (Figure 4B). 

This result showed a trend to statistical significance but seems 

worth mentioning due to the small to moderate effect size. 
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Figure 6 Comparison of training enjoyment in the three interventions.
Notes: no group differences were shown for overall training enjoyment (PACes), strength, and balance training (all P.0.05). The two cognitive–physical training components 
(video game dancing and treadmill memory) tended to be enjoyed more than treadmill walking (trend P=0.069, one tailed). scores system is from one to seven points (least 
to maximal enjoyment), tP,0.10 trend, error bars indicate ± standard error of the mean.
Abbreviations: PACes, Physical Activity enjoyment scale; Te, training enjoyment; DAnCe, virtual reality video game dancing; MeMOrY, treadmill walking with simultane-
ous verbal memory training; PhYs, treadmill walking.

The TMT-B reflects the ability of shifting attention, which 

is a dimension of executive function. This ability might have 

been trained through the simultaneous performance of cogni-

tive and physical activities in DANCE and MEMORY in the 

way that attention had to be shifted continuously between 

the two activities. The dual-task situation in the treadmill 

memory training possibly had some impact on cognitive 

shifting ability because treadmill walking itself required 

a certain amount of attention from the elderly participants 

to be executed safely. A similar result related to cognitive 

shifting was demonstrated in an investigation that compared 

effects on cognition after contemporary dancing, Tai Chi, 

or balance training.56 Thereby, only contemporary danc-

ing, which can be regarded as a modality of simultaneous 

cognitive–physical activity, had an effect on cognition and 

particularly on switching attention as assessed with the Rule 

Shift Cards Sorting Test.57 Interestingly, a recent extensive 

investigation with 182 participants by van het Reve and de 

Bruin did not show this additional effect on shifting attention 

after 3 months of sequential cognitive and physical training 

compared to exclusively physical training (strength and bal-

ance exercises).58 This observation supports the benefits from 

simultaneously performed cognitive–physical training over 

sequential cognitive and physical training programs. In our 

study, participants of PHYS had about 2 years less school 

education compared to the other groups despite randomiza-

tion. However, we would argue that this difference had no 

influence on the development of cognitive outcomes, since 

baseline cognitive measures and MMSE scores were not 

statistically different. Furthermore, adaptation patterns were 

similar in PHYS compared to the other groups in several 

cognitive outcomes. We conclude that additional cognitive 

functions, particularly switching attention, are promoted by 

the dual-task situation in simultaneous cognitive–physical 

programs and further research is warranted to substantiate 

or refute this assumption.

The expected differential adaptation patterns from 

DANCE versus MEMORY were confirmed in the results 

of the Executive Control Task (Figure 4C), which reflects 

working memory as another dimension of the executive func-

tions: different time courses of adaptation from pretest, to 

3-months, and 6-months tests for DANCE versus MEMORY 

were found, with superior performance in DANCE after 

6-months training. This result was supported by a significant 

time×intervention interaction with small to moderate effect 

size in the specific analysis of the second 3-months train-

ing period. Within this period DANCE improved, whereas 

MEMORY deteriorated and PHYS remained unchanged. 
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Our finding confirms the previously noted importance of 

applying longer training durations (6 months or longer) to 

assess cognitive adaptation patterns and to achieve larger 

training gains from physical interventions.3,8,59 More impor-

tantly, the result represents an adaptation from video game 

dancing in an untrained cognitive domain (working memory) 

or a so-called transfer effect. Previous studies on combined 

cognitive–physical training failed to produce cognitive 

transfer effects but reported training specific adaptations: 

for instance, Theill et al27 demonstrated performance gains 

in the Executive Control Task after simultaneous cognitive–

physical and single cognitive training, which both contained 

specific working memory exercises. Similarly, van het Reve 

and de Bruin58 reported a training specific adaptation after 

a 3-months computerized divided attention training, which 

was contained in a sequential cognitive–physical program. 

In summary, the present study provides first indications that 

simultaneous cognitive–physical training boosts particular 

executive functions (shifting attention and working memory) 

depending on the duration of the intervention, and that the 

video game dancing leads to cognitive transfer in working 

memory. However, further investigations are necessary to 

substantiate this finding. Improvements of executive func-

tions in seniors are clinically important because they are 

critical for the regulation of gait, are related to fall risk,60 and 

are prone to aging-related decline in general.55

Are cognitive training effects maintained 
after cessation of the training 
intervention?
Training gains were preserved in our study in three out of 

four follow-up tests over 1 year without any further training 

intervention being applied. Surprisingly, performance kept 

increasing in the TMT-B from 6-months test to follow-up 

test in all groups, which may reflect a delayed response to the 

intervention. We did not systematically assess the amount of 

training that participants might have taken up individually 

after cessation of the intervention. Therefore, we cannot 

estimate a possible effect of additional individual training on 

cognitive measures at follow-up. Maintenance of cognitive 

performance was reported previously after different kinds 

of training interventions. For instance, a 1-year follow-up 

cognitive assessment after 6 months of either indoor cycling 

or stretching and coordination training demonstrated main-

tenance of selective attention (d2 test) and episodic memory 

learning.61 However, only the subgroup with a high level 

of cardiovascular fitness, measured at follow-up, was able 

to preserve performance in episodic memory recognition, 

while the low-fit subgroup deteriorated from postintervention 

to 1-year follow-up. This finding indicates the importance 

of cardiovascular fitness as a mediator to maintain certain 

cognitive abilities. A 5-year follow-up study also reported 

sustained effects in a composite “cognitive function” score 

after sequential cognitive–physical training (effect size 

d+=0.75),62 but no performance maintenance was found 

after exclusively physical training comprising balance and 

coordination exercises. This finding stands in contradiction 

to our own result and may support the necessity of multi-

component physical programs containing aerobic endurance 

and muscular strength exercises for long-term performance 

maintenance of cognition. Finally, a meta-analysis including 

seven studies with exclusively cognitive interventions found 

persistent cognitive enhancements over different follow-up 

periods from 3 months up to 5 years.63 Considering the exist-

ing literature and our own results, it may be summarized that 

long-term cognitive performance maintenance can be evident 

after both, exclusively cognitive or multicomponent physical 

training containing aerobic endurance and strength exercises, 

as well as after sequential or simultaneous cognitive–physical 

interventions. However, which type of intervention might be 

superior in this respect needs further investigation.

Can simultaneous cognitive–physical 
and exclusively physical multicomponent 
training programs elicit broad cognitive 
adaptations?
A significant global linear time effect in the regression 

analyses of eight out of nine cognitive tests was found in this 

study for all three interventions taken together. Therefore, 

our results might extend the findings from the majority of 

interventions and meta-analyses with exclusively physical 

training demonstrating improvements in different cognitive 

dimensions.8–11,64–68 However, due to the lack of a passive 

control group, to account for learning effects from repeated 

measurements, we are not able to display training effects 

exclusively. Nonetheless, based on similar results from the 

literature, the long intervals of 3 months between test ses-

sions and the application of parallel versions in some of the 

cognitive tests, we assume that performance improvements 

can at least partly be accounted for as training effects.

Several neurobiological and physiological mechanisms 

have been suggested to link physical training with benefits 

on cognitive performance: these are increased neurogenesis 

and synaptogenesis in the cortical structure, promotion of 

cerebral metabolism, alterations of neurotransmitter and 

neurotrophic factor levels, availability of cerebral oxygen 
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and glucose, and reduced oxidative stress.69 In particular, 

the cardiovascular fitness hypothesis has been promoted to 

relate aerobic fitness and cognition. Thereby, aerobic train-

ing was found to affect certain mechanisms, such as cerebral 

blood flow, brain-derived neurotrophic factor, and cerebral 

structure, which are also associated with increased cogni-

tive performance.69 Nevertheless, a meta-analysis by Etnier 

et al70 failed to support the relation between aerobic fitness 

and cognition. The authors argued that aerobic fitness itself 

might not be sensitive enough to indicate cognitive adapta-

tions from aerobic exercise training, whereby the underlying 

adaptations of aerobic training might be more sensitive.70 For 

instance, the cerebral circulation hypothesis relies on studies  

that have found elevated oxygen and glucose transport to 

the brain, leading to improved cognitive performance.71 

Furthermore, the neurotrophic stimulation hypothesis sug-

gests that training-induced enhancement of brain-derived 

neurotrophic factor stimulates neurogenesis and thereby 

positively affects learning and mental performance.69 Finally, 

the neuroadrenergic hypothesis proposed that cardiovascu-

lar training promoted neurotransmitter availability, such as 

noradrenaline, adrenaline, and serotonin, which are thought 

to be related to memory storage and retrieval.70,72 As indi-

cated earlier, some recent studies also demonstrated that 

strength12 and coordination11 training induced changes in 

hemodynamic brain activity or elevated activation of certain 

brain networks, respectively, which were associated with 

improved cognition.

The importance of the physical part of a simultaneous 

cognitive–physical training intervention in older adults was 

supported by Theill et al27 who reported improvements in 

long-term visual memory (Paired-Associates Task) after 

simultaneous treadmill walking and memory training, but 

not after exclusively cognitive training. Additionally, two 

meta-analytic studies pointed out that exclusively cognitive 

training programs increased performance only on related 

or training-specific tasks and no cognitive transfer effects 

were evident.15,16 This was also confirmed by the recent 

review from Oei and Patterson17 who investigated transfer 

effects in video game training studies. However, some cog-

nitive training studies reported broad improvements from 

cognitive training, particularly from extended but not from 

strategy training approaches.14 Extended practice refers to the 

training of basic cognitive abilities, such as choice response 

time or phoneme span, which are used in different cognitive 

activities. Additionally, a recent meta-analysis by Hindin and 

Zelinski13 found similar effect sizes in extended cognitive 

training compared to aerobic exercise training, although 

different neurophysiological mechanisms would likely have 

led to these effects. Nevertheless, it appears that physical and 

combined cognitive–physical training interventions may be 

more beneficial than exclusively cognitive training interven-

tions for older adults to enhance a broad range of cognitive 

abilities. Such training programs should therefore be imple-

mented in the clinical prevention of cognitive impairments, 

which are widely prevalent in older adults.1

strengths and limitations
Methodological strengths of this study were the comparably 

large number of participants, the long training period with 

follow-up measurements, and the broad cognitive testing 

battery to assess several dimensions of cognition. Some 

limitations have to be considered as well. First, the specific 

effects of the two simultaneous training modalities could 

not be identified exactly because of the combination with 

the multiple physical components (strength and balance 

training). However, this was not the focus of this study, 

since we explicitly aimed at evaluating effects from differ-

ent multicomponent programs. Second, the conclusions and 

recommendations from this study are limited to physically 

and mentally healthy seniors, because following the selec-

tion criteria such participants were recruited. Training effects 

might have been even larger in a population of lower physical 

and mental status. This assumption is based on the exercise 

training principle “Initial Values” stating that improvement 

in the outcome of interest will be greatest in those with lower 

initial values.42 Those with lowest levels of fitness theoreti-

cally have greatest room for improvement. It seems, there-

fore, important and warranted to repeat the study design in a 

more vulnerable population exhibiting impairments in fitness 

and/or cognitive domains. Further, as mentioned earlier, we 

did not include a passive control group in the design of the 

study, which means that we could not exactly differentiate 

between training effects and learning effects from repeated 

testing. However, this was not the main focus of the present 

study. Although participants were blinded to the expected 

study outcome, blinding of the investigators was not possible 

since they also supervised and conducted training and testing 

sessions. This is an additional limitation to this study.

Conclusion
We demonstrated that multicomponent simultaneous 

cognitive–physical training programs have the potential 

to boost particular executive functions (including shifting 

attention and working memory) in healthy older adults com-

pared to an exclusively physical multicomponent program. 
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Importantly, performance levels in executive functions, 

long-term visual memory (episodic memory), and processing 

speed were maintained over 1 year after all three programs. 

The novel training concepts of simultaneous cognitive–

physical activity tended to be enjoyed more by seniors than 

traditional training and led to training specific as well as to 

transfer adaptations in cognition. Therefore, we recommend 

multicomponent simultaneous cognitive–physical training 

programs to enhance particular executive functions in older 

adults. Such programs may potentially counteract the large 

prevalence of cognitive impairments and decline in the 

elderly, inherently leading to more independence and a better 

quality of life. Future studies should also investigate the neu-

rological background of cognitive behavioral performance 

enhancements to shed light on the interconnection between 

plasticity of cognition, brain function, and brain structure.
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